OLS
OLS 기반 인과추론 시 오차항 관련 체크 필요 가정
배경 * 아래 글을 DANBI에서 보다가 더 알아보게 되었습니다. OLS를 떠받치는 몇 개의 기둥이 있는데 그중 실용적으로 가장 중요한 것이 일치성(consistency)다. 쉽게 말해서 OLS를 통해 도출된 추정량이 있을 때 샘플사이즈가 커지면서 이 값이 참 값으로 접근한다는 것이다. 일치성이 충족되면 우리는 적당하게 큰 표본에 대해서 추정치가 좋은 속성을 지니고 있다고
OLS
배경 * 아래 글을 DANBI에서 보다가 더 알아보게 되었습니다. OLS를 떠받치는 몇 개의 기둥이 있는데 그중 실용적으로 가장 중요한 것이 일치성(consistency)다. 쉽게 말해서 OLS를 통해 도출된 추정량이 있을 때 샘플사이즈가 커지면서 이 값이 참 값으로 접근한다는 것이다. 일치성이 충족되면 우리는 적당하게 큰 표본에 대해서 추정치가 좋은 속성을 지니고 있다고
AI
사람들이 AI가 필요하다고 생각하는 시점 저 판사를 얼른 AI로 교체해야 한다. 유튜브에서 뉴스를 보다 보면 정말 많이 보이는 덧글입니다. 이러한 내용의 덧글이 달릴 때마다, 정말 많은 사람들이 공감을 표하곤 합니다. 왜 이렇게 사람들은 이러한 주장에 공감을 표하는 것일까? AI는 시킨대로 하기 때문에 공정하다는 인식 여러 이유가 있겠지만, 사람들은 아마 AI가
Data
1. BG/NBD 모델이란? * BG/NBD(Beta-Geometric/Negative Binomial Distribution) 모델은 **고객의 생애 가치(Customer Lifetime Value, CLV)**를 추정하는 데 사용되는 확률적 모델입니다. * 특히 고객이 반복 구매를 할지, 아니면 더 이상 활동하지 않을지를 추정하는 데 유용합니다. 이 모델은 고객의 구매 행태를 두 가지 중요한 개념으로 나눕니다: * 고객은 활성(active)
Data
다중공선성(Multi Collinearity) * **Multi-Collinearity(다중공선성)**는 독립 변수들 간의 강한 상관관계가 존재할 때 발생합니다. 즉, 한 독립 변수가 다른 독립 변수에 의해 설명될 수 있을 정도로 상관관계가 높은 상황을 의미합니다. * 이 문제는 주로 회귀 분석에서 나타나며, 변수들 간의 관계를 해석하는 데 있어 큰 장애물이 될 수 있습니다. * 일반적인 회귀식을 $Y=
Data
Bayesian P- Value * Bayesian P-Value는 **모델의 적합도(goodness-of-fit)**를 평가하는 데 사용됩니다. * 사후 분포(posterior distribution)를 이용하여 실제 데이터와 모델이 생성한 예상 데이터를 비교함으로써, 관측된 데이터가 모델에 의해 얼마나 잘 설명되는지를 평가합니다. * 빈도주의 p-값은 "관찰된 데이터보다 극단적인 데이터가 나올 확률"을 계산하지만, Bayesian P-Value는 "모델이 실제
Data
Non Identifiability * Non-Identifiability는 주어진 데이터와 모델에 대해 특정 파라미터를 고유하게 식별할 수 없는 상황을 의미합니다. 즉, 여러 파라미터 값들이 동일한 데이터를 생성할 수 있으며, 이로 인해 특정 파라미터 값을 확정적으로 추정하기 어렵게 됩니다. * 베이지안 추론에서 Non-Identifiability는 사후 분포가 특정 파라미터 값에 대해 명확하게 수렴하지 않고, 여러 값들에 대해 비슷한 확률을
Data
Rootgram * 히스토그램의 변형으로 데이터가 비정규적이거나 큰 분산을 가지는 경우, 정확한 분포를 파악하기 위해 사용됩니다. * 일반적으로 히스토그램은 데이터의 빈도를 직접적으로 나타내기 때문에, 큰 값이 빈번하게 발생하는 경우 상대적으로 작은 값을 잘 드러내지 못하는 경향이 있습니다. 반면, Rootgram은 빈도를 제곱근 형태로 변환하여, 데이터 분포의 차이를 더 잘 시각화할 수 있도록 돕습니다 * 여기서
Data
유의사항 * 코드의 작성방식: 다른사람이 코드를 읽고 이해할 수 있는가? * 코드의 성능: 의도치 않은 부작용이 발생하는가? * 코드의 복잡성: 유스케이스에 비해 설계가 과도하고 부족한가 * 개선의 용이성: ML코드가 지속적으로 리팩토링 되는가? 코드 작성방식에 따른 개발자(+데이터과학자)의 유형 분류 출처 * 머신러닝 엔지니어링 인 액션
Data
기본 개념 * ELPD(Expected Log Predictive Density)는 모델이 새로운 데이터를 얼마나 잘 예측하는지를 나타내는 지표로, 주어진 데이터 포인트에 대해 모델이 예측한 확률의 로그 값(로그확률)을 합산한 것입니다. $$\text{ELPD} = \sum_{i=1}^{n} \log p(y_i \mid \text{data})$$ * $n$: 데이터 포인트의 수 * $y_i$ : 실제 관측된
Data
잭나이프 샘플링이란? * 잭나이프 샘플링은 표본 데이터에서 하나의 관측치를 제거한 여러 하위 샘플을 만들어, 이들 샘플에 대해 통계량을 계산한 후 그 결과를 바탕으로 전체 표본의 변동성을 추정하는 방법입니다. 잭 * 나이프는 주로 표본의 분산을 추정하거나 통계량의 편향을 줄이기 위해 사용됩니다. 예시 * 주어진 표본이 [x1, x2, x3, x4]라면, 잭나이프 샘플링은 다음과 같은
Communication
자전거를 타고 약속장소로 이동하는 중이었습니다. 근처 과일 가게에 이런 문구가 적혀있었습니다. "한 상자에 X,000원" 과일을 직접 사먹지는 않는 편이기 때문에 가격은 모르지만 꽤 매력적인 가격대였습니다. 그래서 잠시 "살까?" 망설였습니다. 하지만 이내 자전거를 타고 다시 가던 길을 갔습니다. 한 상자 안에 몇개가 들어가 있을지를 몰랐기 때문입니다.
Programming
Code import warnings import functools def deprecated(reason=None, alternative=None): """ Deprecated Function을 표시하는 데코레이터입니다. Args: reason (str, optional): 함수가 Deprecated 된 이유를 설명합니다. alternative (str, optional): 대체 함수나 방법을 안내합니다. """ def decorator(func): @functools.wraps(func) def wrapped(*args, **kwargs): message = f"
Data
목적 및 배경 * 매일 글을 쓰는 입장에서 보다 많은 글을 작성하기 위해서 1차로 글의 구조만 잡아주고, 나머지 내용은 LLM으로 채운 후 퇴고를 하는 형태를 시도해보려고 한다. Code 01. Obsidian에 있는 내 글을 모아서 전처리하기 import os import re import time import pickle def preProcessNote(file, path_dir): try: file_path
Career
거실에 홈캠을 하나 설치할 일이 생겼습니다. 홈캠은 이전에 구매한 것과 동일한 구조로, 회전은 되지 않지만, 앞으로 각도를 조절하여 찍을 수 있는 구조로 되어 있었습니다. 설치 자체는 어렵지 않을 것이라고 생각했는데,문제는 장소였습니다. 거실은 부엌과 연결되어 세로로 긴 구조로 일반적인 정사각형 형태의 방 대비 화각의 한계에서 발생하는 사각지대가 존재하고 있었습니다. 이를
Data
Evidently AI Evidently AI는 머신러닝 모델의 성능과 데이터 분포의 변화를 시각적으로 분석하고 모니터링할 수 있는 Python 라이브러리입니다. 이 라이브러리는 모델의 드리프트를 탐지하고, 이를 기반으로 모델의 성능 저하를 사전에 예방하는 데 유용합니다. 주요 기능 * 데이터 드리프트 감지: 현재 데이터와 과거 데이터 간의 분포 차이를 분석합니다. * 대규모 데이터 처리: 대규모 데이터에 대해
import os import re import time import pickle def preProcessNote(file, path_dir): try: file_path = os.path.join(path_dir, file) with open(file_path, 'r', encoding='utf-8') as f: lines = f.readlines() # 지워야 할 지점 체크 start_idx = None end_idx = None for idx,