Fisher Information의 직관적인 이해

Fisher Information을 직관적으로 이해하기 위해서는 이계도함수를 알 필요가 있다. 이계도함수는 쉽게 생각하면 변화량의 변화량을 나타낸다. 즉 기울기가 변화하는 속도를 의미한다. 이차함수 $f(x)=ax^2 +b$에서 $f'(x)=2ax$이다. 이 걸 다시 미분하면 $f''(x)= 2a$로 기울기가 $2a$만큼 변화한다는 것을 의미한다 a가 작아지면 작아질 수록 전체적인 그래프의 모양이 크게 변하지 않고 완만한 모습일 것이다.

여기서 MLE(Maximum Likelihood Estimation)을 여기에 연결해보자. 관찰된 값 $X$들을 바탕으로 MLE를 이용해서 Parameter를 추정하는데 이 때 우리가 통상하는 일들이 미분을 해서 최대값을 구하는 것이다. 이 관점에서 한번 더 미분을 해봄으로써 그 최대값이 정말로 정확한 정보인지를 판단해볼 수 있을 것이다. 다시 말해도 한 번더 미분했는데 그 변화량의 값이 크다면 그 최대값은 정말 독보적으로 뾰족한, 봉우리에 위치한 값인지 확신하는 그 정도로 간주할 수 있을 것이다.

Read more

[책]Reshuffle: Who wins when AI restacks the knowledge economy

[책]Reshuffle: Who wins when AI restacks the knowledge economy

원래는 Amazon에 가서 Personal Knowledge Managment에 관한 책을 사려고 했다. Sketch Your Mind라는 책이었는데, 그 때 이 책 “Reshuffle”을 발견하였다. AI가 어떻게 Knowledge Economy를 흔들 것가? 라는 부제를 훑어보면서 저자가 쓴 다른 책을 보게 되었는데 거기에 내가 좋아했던 책을쓴 저자라는 것을 알게 되었다. 그래서 크게 고민하지 않고 구매를 하고

By Bongho, Lee
[책]올라운드투자, 누군가의 투자일기

[책]올라운드투자, 누군가의 투자일기

“올라운드 투자”라는 제목을 보았을 때는, “올라운드 플레이어”가 생각이 났다. “올라운드”라는 표현을 오랜만에 들어본 까닭이었다. 그럼에도 불구하고 이 책을 고른 것은 저자가 그간 보여준 컨텐츠에 대한 신뢰가 있던 까닭이었다. 컨텐츠를 다양하게 보는 편이지만 깊이가 아주 있지는 않았다. 여기서 깊이라 함은 기존 전문적인 정량적 분석의 내용의 수준을 말하는 것이다.

By Bongho, Lee
내가 놓치고 있던 미래, 먼저 온 미래를 읽고

내가 놓치고 있던 미래, 먼저 온 미래를 읽고

장강명 작가의 책은, 유학시절 읽고 처음이었다. 유학시절 "한국이 싫어서"라는 책은 동기부여가 상당히 되는 책이었다. 한국을 떠나 새로운 정채성을 학생으로서 Build up 해나가고 있던 상황에서 이 책은 제목부터 꽤 솔깃하였다. 물론 결말이 기억날 정도로 인상깊은 책은 아니었지만 말이다. 그렇게 시간이 흘러 장강명 작가의 책은 더 이상 읽지 않던

By Bongho, Lee