Gibbs Sampling과 MH Sampling 공통점과 차이점 정리

Gibbs Sampling과 MH Sampling 공통점과 차이점 정리
Photo by Eduardo Soares / Unsplash

공통점

  • MCMC 알고리즘: 두 알고리즘 모두 마르코프 체인을 사용하여 확률 분포에서 샘플링합니다. 마르코프 체인은 과거 상태만 고려하여 다음 상태를 결정하는 확률적 모델입니다.
  • 베이즈 추론: 두 알고리즘 모두 베이즈 추론에서 사후 분포를 추정하는 데 사용됩니다. 베이즈 추론은 사전 정보와 관측 데이터를 결합하여 사후 분포를 계산하는 방법입니다.

차이점

  • 제안 분포: 깁스 샘플링은 각 변수의 조건부 분포를 제안 분포로 사용합니다. 반면에 메트로폴리스-헤이스팅스 샘플링은 임의의 제안 분포를 사용할 수 있습니다.
  • 수락 확률: 깁스 샘플링은 항상 새로운 샘플을 받아들입니다. 반면에 메트로폴리스-헤이스팅스 샘플링은 새로운 샘플을 받아들이는지 거부하는지 확률에 따라 결정합니다.

동전던지기 예시

  • 동전을 10번 던졌을 때 앞면이 5번 나왔다고 가정해봅시다. 동전의 앞면이 나올 확률을 추정하기 위해 베이즈 추론을 사용할 수 있습니다.

  • 깁스 샘플링

    • 초기값 설정: 앞면이 나올 확률에 대한 초기값을 설정합니다. 예를 들어, 0.5로 설정할 수 있습니다.
    • 반복: 다음 단계를 10번 반복합니다.
    • 조건부 분포 계산: 앞면이 나올 확률의 조건부 분포를 계산합니다. 이 경우, 이항 분포를 사용합니다.
    • 샘플링: 조건부 분포에서 새로운 샘플을 추출합니다.
    • 결과: 추출된 샘플들을 사용하여 앞면이 나올 확률의 사후 분포를 추정합니다.
  • 메트로폴리스-헤이스팅스 샘플링

    • 다음은 동전 던지기 예시입니다. 동전을 10번 던졌을 때 앞면이 5번 나왔다고 가정
    • 초기값 설정 및 제안분포는 Gibbs와 동일
      • 목표 분포: 베타 분포 Beta(α,β)
      • 제안 분포: 현재 상태 θ에서 평균이 θ, 분산이 σ2인 정규 분포
    • 반복: 다음 단계를 10번 반복합니다.
      • 새로운 샘플 제안: 정규 분포에서 새로운 샘플 θ′를 추출합니다.
      • 수락 확률 계산: 다음과 같이 수락 확률 α(θ,θ′)를 계산합니다.
        • $α(θ, θ') = min{1, \frac{Beta(\theta' + \alpha - 1, \beta + n - \theta' - 1)}{Beta(\theta + \alpha - 1, \beta + n - \theta - 1)} \cdot \frac{N(\theta | \theta', \sigma^2)}{N(\theta' | \theta, \sigma^2)}}$
      • 샘플 수락/거부: 균일 무작위 변수 u를 0과 1 사이에서 추출하고, u≤α(θ,θ′)인지 확인합니다.
        • u≤α(θ,θ′): 새로운 샘플 θ′를 받아들입니다.
        • u>α(θ,θ′): 새로운 샘플 θ′를 거부하고 현재 상태 θ를 유지합니다.
    • 결과: 추출된 샘플들을 사용하여 앞면이 나올 확률의 사후 분포를 추정합니다.
      • 위의 과정을 10번 반복하여 θ의 사후 분포를 추정합니다.

🗃️ Reference

Read more

DataFrame은 Pandera로, 모델은 Pydantic으로 데이터를 검증한다.

DataFrame은 Pandera로, 모델은 Pydantic으로 데이터를 검증한다.

Pandera: 데이터프레임 검증에 최적화된 도구 주요 장점 * Pandas와 통합: Pandas 데이터프레임에 대해 스키마 기반 검증을 수행합니다. * 유연한 검증 조건: 열 데이터 타입, 값 범위, Null 여부 등 다양한 검증 조건을 정의할 수 있습니다. * 명확한 오류 메시지: 스키마 불일치에 대한 명확한 오류 메시지를 제공합니다. 단점 * 대용량 데이터 검증에서는 속도가 느릴 수

Tobit Regression은 Censored Data에 적합한 Regression이다.

Tobit Regression은 Censored Data에 적합한 Regression이다.

Tobit Regression * Tobit 회귀(Tobit Regression)는 종속 변수가 특정 값에서 절단(Censored)된 상황에서 데이터를 분석하기 위해 사용되는 통계 기법입니다. * James Tobin이 처음 제안한 이 모델은 경제학과 사회과학 분야에서 자주 사용되며, 일반 선형 회귀로는 설명할 수 없는 상황에서 효과적으로 적용할 수 있습니다. Tobit Regression 수식 1. 관측된 종속 변수