인과추론(Causal Inference) – Inverse Probability Weight

역확률 가중치(Inverse Probability Weighting)

  • 모집단에서 일부 데이터가 유실되었을 때(예: Selection Bias) 남은 데이터로 유사 모집단(Pseudo Population)을 생성해서 통계를 계산하는 기법
  • 1952년에 제시된 꽤 오래된 기법으로 각 데이터에 데이터가 치료군(Treatment)에 속할 가능성의 역수를 가중치(Weight)로 곱해주는 방식
  • 개념만 쉽게 본다고 하면 Propensity Score Matching은 데이터의 수를 줄이는데 반해서 이 것은 데이터를 늘리는 개념
  • 인과추론에서는 Confounding을 제거하기 위한 여러 방법이 있는데(Restriction, Matching, Adjustment, and Weighting) Weigthing 관련 가장 많이 쓰이는 방식이 Inverse Probability Weigthing으로 이를 통해서 표준화를 할 수 있다. 데이터의 분포를 균일하게 맞춰줄 수 있다.
  • 기본적으로 로지스틱 회귀분석 모델에서 사용이 된다.

인과추론에서는?

  • Inverse Probability Weighting(IPW)를 이용하면 특정 개입조건(Z=z)인 상황에서 $ P(Y=do(x))$를 구할 때 X=x에 대한 Y=y값의 빈도를 바탕으로 계산량을 조금 더 줄일 수 있게 된다.

Read more

고객 경험이란 무엇일까?

고객 경험이란 무엇일까?

고객경험이란 무엇일까? 1. 과거 어느 대형 프로젝트에서 있던 일이다. 신사업을 위해서 예측 모델 값을 제공해야 하는 상황이었다. 데이터도 없고,어느정도의 정확도를 제공해야 하는지 답이 없었다. 점추정을 할 것인가? 구간 추정을 할 것인가를 가지고 논의중이었다. Product Manager 줄기차게 고객경험을 내세우며 점추정으로 해야 한다고 주장하였다. 근거는 오롯이 "고객 경험"이었다.

By Bongho, Lee
수요예측, 수정구슬이 아닌 목표를 향한 냉정한 나침반

수요예측, 수정구슬이 아닌 목표를 향한 냉정한 나침반

수요예측의 정의와 비즈니스에서의 중요성 기업의 성장과 운영 효율화를 위해 **수요예측(Demand Forecasting)**은 선택이 아닌 필수 요소로 자리 잡았다. 많은 경영진들이 수요예측을 미래 판매량을 정확히 맞히는 '예언'으로 기대하지만, 이는 수요예측의 본질을 오해하는 것이다. 수요예측의 진짜 의미: 미래를 점치는 수정구슬이 아니라, 우리가 도달해야 할 '목표'를

By Bongho, Lee
Agentic AI와 MSA, 그리고 회사의 미래

Agentic AI와 MSA, 그리고 회사의 미래

어딜 가도 AI Agent에 대한 이야기가 들리는 요즈음이다. 정말 안하는 회사가 없다. 사람과 다르게 24시간을 일해도 지치지 않고, 재사용성도 가능하니 비용절감측면에서도, 생산성측면에서도 이만한 솔루션이 없기는 하다. 이러한 Agent가 여럿 모여 인간의 개입없이 복잡한 기능을 수행하는 시스템이 이른바 Agentic AI다. Agentic AI를 보면 문득 개인적으로는 MSA(Micro Service Architecture)가 생각난다.

By Bongho, Lee