LangChain 활용해서 내 글스타일에 맞춰 글쓰는 LLM 구축하기 Ver0.1

LangChain 활용해서 내 글스타일에 맞춰 글쓰는 LLM 구축하기 Ver0.1
Photo by Joshua Hoehne / Unsplash

목적 및 배경

  • 매일 글을 쓰는 입장에서 보다 많은 글을 작성하기 위해서 1차로 글의 구조만 잡아주고, 나머지 내용은 LLM으로 채운 후 퇴고를 하는 형태를 시도해보려고 한다.

Code

01. Obsidian에 있는 내 글을 모아서 전처리하기

import os  
import re  
import time  
import pickle  
  
def preProcessNote(file, path_dir):  
    try:  
        file_path = os.path.join(path_dir, file)  
        with open(file_path, 'r', encoding='utf-8') as f:  
            lines = f.readlines()  
  
        # 지워야 할 지점 체크  
        start_idx = None  
        end_idx = None  
        for idx, line in enumerate(lines):  
            if re.match('---', line):  
                if start_idx is None:  
                    start_idx = idx  
                else:  
                    end_idx = idx  
                    break  
  
        if start_idx is None or end_idx is None:  
            raise ValueError(f"Start or end delimiter not found in file: {file_path}")  
  
        # 삭제하기  
        lines = lines[:start_idx] + lines[end_idx+1:]  
        note = ''.join(lines)  
  
        # 데이터 정제  
        note = re.sub(r'[\n\t]+', '', note)  
  
        return note  
  
    except FileNotFoundError as e:  
        raise FileNotFoundError(f"File not found: {file_path}") from e  
    except PermissionError as e:  
        raise PermissionError(f"Permission denied for file: {file_path}") from e  
    except UnicodeDecodeError as e:  
        raise UnicodeDecodeError(f"Error decoding file: {file_path}. Ensure the file is UTF-8 encoded.") from e  
    except ValueError as e:  
        raise ValueError(f"Processing error in file {file_path}: {str(e)}") from e  
    except OSError as e:  
        raise OSError(f"OS error occurred while processing file: {file_path}") from e  
    except Exception as e:  
        raise Exception(f"Unexpected error while processing file: {file_path}") from e  
  
def preProcessNotes(path_dir="data/md", file_ext="md", output_dir="output", output_filename="notes.pkl"):  
    start_time = time.time()  # 시작 시간 기록  
  
    try:  
        # 파일 리스트 가지고 오기  
        file_list = os.listdir(path_dir)  
        file_list = [file for file in file_list if file.endswith(f'.{file_ext}')]  
    except FileNotFoundError as e:  
        raise FileNotFoundError(f"Directory not found: {path_dir}") from e  
    except PermissionError as e:  
        raise PermissionError(f"Permission denied for directory: {path_dir}") from e  
    except OSError as e:  
        raise OSError(f"OS error occurred while accessing directory: {path_dir}") from e  
    except Exception as e:  
        raise Exception(f"Unexpected error while listing files in directory: {path_dir}") from e  
  
    # 출력 디렉토리 생성  
    if not os.path.exists(output_dir):  
        try:  
            os.makedirs(output_dir)  
        except OSError as e:  
            raise OSError(f"Failed to create output directory: {output_dir}") from e  
  
    notes = []  
  
    for file in file_list:  
        try:  
            note = preProcessNote(file, path_dir)  
            notes.append(note)  
        except Exception as e:  
            print(f"Error occurred while processing {file}: {e}")  
  
    # notes 리스트를 pickle 파일로 저장  
    output_file_path = os.path.join(output_dir, output_filename)  
    try:  
        with open(output_file_path, 'wb') as pkl_file:  
            pickle.dump(notes, pkl_file)  
    except Exception as e:  
        raise Exception(f"Failed to save notes to pickle file: {output_file_path}") from e  
  
    end_time = time.time()  # 종료 시간 기록  
    elapsed_time = end_time - start_time  # 경과 시간 계산  
  
    print(f"Processing completed successfully in {elapsed_time:.2f} seconds. Notes saved to {output_file_path}")  
  
    return notes

02. LangChain 구축

import pickle  
import os  
import ollama  
from langchain.schema import Document  
from langchain_community.embeddings import OllamaEmbeddings  
from langchain_chroma import Chroma

notes = pickle.load(open('output/notes.pkl', 'rb'))  
notes_dict = {index: document for index, document in enumerate(notes)}

# notes_dict에서 각 문서를 Document 객체로 변환  
documents = [Document(page_content=content) for content in notes_dict.values()]  
embeddings = OllamaEmbeddings(model="llama3.1:latest")

output_dir = "db"  
# 출력 디렉토리 생성  
if not os.path.exists(output_dir):  
    try:  
        os.makedirs(output_dir)  
    except OSError as e:  
        raise OSError(f"Failed to create output directory: {output_dir}") from e  
  
collection_name = "obsidian"  
# ChromaDB에 저장  
try:  
    vectordb = Chroma.from_documents(  
        documents=documents,  
        embedding=embeddings,  
        collection_name=collection_name,  # 컬렉션 이름 추가  
        persist_directory=output_dir  
    )  
    print("데이터 저장 성공")  
except ValueError as e:  
    print(f"오류 발생: {e}")  
except Exception as e:  
    print(f"예상치 못한 오류 발생: {e}")  
  
  
[#Defines the retriever
retriever = vectordb.as_retriever(search_type='mmr', search_kwargs ={'k':1})

#Gets the document for the retriever
retriever.get_relevant_documents('사전분포란?')

from langchain_core.output_parsers import StrOutputParser  
from langchain_core.prompts import ChatPromptTemplate  
from langchain_core.runnables import RunnablePassthrough  
from langchain_openai import ChatOpenAI  
from langchain_experimental.llms.ollama_functions import OllamaFunctions  
from operator import itemgetter   
  
# This is the prompt I used  
  
# It takes in the documents as {context} and user provide {topic}  
template = """Mimic the writing style in the context:  
{context} and produce a blog on the topic in Korean.  
The number of character should be more than 2000 characters.  
Topic: {topic}  
  
  
"""  
  
prompt = ChatPromptTemplate.from_template(template)  
  
model = OllamaFunctions(model="llama3.1:latest", format="json")  
# model = ChatOpenAI(api_key = "key")  
  
# Using LangCHain LCEL to supply the prompt and generate output  
chain = (  
    {  
        "context":itemgetter("topic") | retriever,  
        "topic": itemgetter("topic"),  
  
    }  
    | prompt  
    | model  
    | StrOutputParser()  
)  
#running the Chain  
chain.invoke({"topic":  "Airflow "})

수정포인트

  • VectorDB에서 검색해본 겨로가, 우선 임베딩이 충분히 한글을 반영하는 것으로 보이지 않는다 → 모델 교체 필요
  • VectorDB는 sqlite 형태로 저장이 되는데 데이터를 다시 로딩하는 과정에서 에러 발생
  • 기타 Warning에 대한 수정 필요
ValueError: Expected collection name that (1) contains 3-63 characters, (2) starts and ends with an alphanumeric character, (3) otherwise contains only alphanumeric characters, underscores or hyphens (-), (4) contains no two consecutive periods (..) and (5) is not a valid IPv4 address, got ./db/chroma.sqlite3

Read more

내가 놓치고 있던 미래, 먼저 온 미래를 읽고

내가 놓치고 있던 미래, 먼저 온 미래를 읽고

장강명 작가의 책은, 유학시절 읽고 처음이었다. 유학시절 "한국이 싫어서"라는 책은 동기부여가 상당히 되는 책이었다. 한국을 떠나 새로운 정채성을 학생으로서 Build up 해나가고 있던 상황에서 이 책은 제목부터 꽤 솔깃하였다. 물론 결말이 기억날 정도로 인상깊은 책은 아니었지만 말이다. 그렇게 시간이 흘러 장강명 작가의 책은 더 이상 읽지 않던

By Bongho, Lee
고객 경험이란 무엇일까?

고객 경험이란 무엇일까?

고객경험이란 무엇일까? 1. 과거 어느 대형 프로젝트에서 있던 일이다. 신사업을 위해서 예측 모델 값을 제공해야 하는 상황이었다. 데이터도 없고,어느정도의 정확도를 제공해야 하는지 답이 없었다. 점추정을 할 것인가? 구간 추정을 할 것인가를 가지고 논의중이었다. Product Manager 줄기차게 고객경험을 내세우며 점추정으로 해야 한다고 주장하였다. 근거는 오롯이 "고객 경험"이었다.

By Bongho, Lee
수요예측, 수정구슬이 아닌 목표를 향한 냉정한 나침반

수요예측, 수정구슬이 아닌 목표를 향한 냉정한 나침반

수요예측의 정의와 비즈니스에서의 중요성 기업의 성장과 운영 효율화를 위해 **수요예측(Demand Forecasting)**은 선택이 아닌 필수 요소로 자리 잡았다. 많은 경영진들이 수요예측을 미래 판매량을 정확히 맞히는 '예언'으로 기대하지만, 이는 수요예측의 본질을 오해하는 것이다. 수요예측의 진짜 의미: 미래를 점치는 수정구슬이 아니라, 우리가 도달해야 할 '목표'를

By Bongho, Lee