Possion Distribution์—์„œ ๐œ†๋ฅผ ๊ตฌํ•˜๊ธฐ

๋ฌธ์ œ

  • ISP(Internet Service Provider์— t ์‹œ์ ์— ๋„๋‹ฌํ•˜๋Š” Ping์˜ ์ˆ˜๋ฅผ $X_t$๋ผ๊ณ  ํ•˜
  • ์ด ๋•Œ $X_t$๋Š” Random Variable์ด๊ณ  ๋งค 10์ดˆ๋งˆ๋‹ค Ping์˜ ์—†๋Š” ํ™•๋ฅ ์„ 0.001์ด๋ผ๊ณ  ํ•  ๋•Œ, 30์ดˆ ๋‚ด์— Ping์ด 10๋ฒˆ์ด์ƒ ์˜ฌ ํ™•๋ฅ ์€ ์–ผ๋งˆ์ธ๊ฐ€?

ํ•ด๊ฒฐ

  • $X_{t} \sim \text{Poisson}(\lambda t)$ ํ˜•ํƒœ๋กœ ์‹์„ ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.
  • $0.001 = P(X_{10}=0) = \frac{\exp(-10\lambda)(10\lambda)^{0}}{0!} = \exp(-10\lambda) $ ์ด๋ฏ€๋กœ $\lambda = \frac{-\log(0.001)}{10} $์ด๋‹ค.
  • ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ 30์ดˆ ๋‚ด์— 0๋ฒˆ์ผ ํ™•๋ฅ ์„ ๊ตฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ด๋•Œ Poisson Distribution์˜ PDF์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์œผ๋‹ˆ ํ•ด๋‹น ์‹์— ๊ฐ’์„ ๋„ฃ์–ด์„œ $\lambda$๋ฅผ ๊ตฌํ•ด์ค€๋‹ค.

$$P(X=x)=e^{-\lambda }\cdot \frac{\lambda ^x}{x!}$$

$$P(X_{30}=0) = \frac{\exp(3\log(0.001))(-3\log(0.001))^{0}}{0!} ย = (0.001)^{3}$$

  • ์—ฌ๊ธฐ์„œ ์œ ์ถ”ํ•  ์ˆ˜ ์žˆ๋Š” ํŠน์„ฑ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ${30 \over ย 10}=3$์ด๋ผ์„œ ์ง€์ˆ˜๋กœ 3์ด ์œ„ ์‹์— ๋ถ™์€ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

$$P(X_{t_2}=0)=P(X_{t_1}=0)^{\frac{t_2}{t_1}}$$

  • ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ 30์ดˆ ๋‚ด์— Ping์ด 10๋ฒˆ ์ด์ƒ ์˜ฌ ํ™•๋ฅ ์„ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ $\Phi$๋ฅผ ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ์˜ CDF(Cumulative Distribution Function)๋ผ๊ณ  ํ•œ๋‹ค๋ฉด ์ „์ฒด ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. Poission Distribution์˜ Mean๊ณผ Variance๋Š” $\lambda$๋กœ ๋™์ผํ•˜๋‹ค.

$$P(X_{30} \geq 10) = P\left(\frac{X_{30}-E[X_{30}]}{\sqrt{Var[X_{30}]}} \geq \frac{10-E[X_{30}]}{Var[X_{30}]} \right) \\ = P\left(\frac{X_{30}-E[X_{30}]}{\sqrt{Var[X_{30}]}} \geq \frac{10-30\lambda}{\sqrt{30\lambda}} \right) \\ \approx 1-\Phi\left(\frac{10-30\lambda}{\sqrt{30\lambda}}\right) \\ \approx 1-\Phi\left(-2.36\right) \\ \approx 1-0.009=0.991$$

References