전통적 시계열 모델의 경우 데이터가 정상성(Stationary)을 만족해야지 사용할 수 있으나, Prophet은 이런 것을 고민할 필요가 없다.
R과 Python에서 모두 작동을 하기 때문에 언어에 대한 제한이 없어서 이후에 활용하기좋다
관련된 논문은 Forecasting at scale으로 내용을 대략 훑어보니 Prophet은 GAM모형을 활용한 것으로 트랜드 + 공휴일 + 주기(주,년)의 분포함수를 가산결합하여 예측하는 구조이다.
쓰면서 경험한 부분
공휴일 등의 Domain Knowledge에 기반한 데이터를 내장하고 있어서 Parameter 조작을 통해 반영하기 쉽다.→ 하지만 한국의 공휴일은 없어서 별도로 데이터를 작업해서 넣어주어야 한다.
Checkpoint를 자동으로 찾아서 인식후 Fitting하기 때문에 트랜드가 빠르게 변하는 산업에서의 수요예측에 용이하다. → Scale Up에 익숙한 스타트업에게는 꽤 용이한 기능이라고 볼 수 있다.
GAM을 기반으로 한 덕분에비 선형회귀에서는 자칫하면 놓칠 수 있는 비선형관계를 포함해서 적합을 할 수는 있지만, GAM이기 때문에 단순 가산으로 모델간 결합을 하다보니 상호작용?에 대해 놓칠 수 있는 부분이 있다.
스타트업에서 여러번 대형 프로모션을 일으켜서 기존 수치와의 갭이 큰 변동이 발생했을 때 예측하기가 참 난감하다. 이런 경우는 데이터가 갖는 주기나 트랜드 패턴을 흔들어놓으니 예측 자체의 정확성이 크게 하락할 수 있다. → 사실 이런 경우는 다른 모델 역시 예측력이 크게 하락하니 Prophet만의 문제라고 보기는 어렵다.