[데이터조직] 팀을 맡고 먼저 해야 하는 것, 면담

팀을 맡아서 운용한지도 1년을 훌쩍 넘었다. 처음 팀장을 맡았을 때를 생각해 보면 시간이 정말 빠르게 지난 것같다. 새로운 팀을 맡아서 운영도 열심히 해보고 있다. 그나마 다행인 것은 좋은 사람을 계속 만날 수 있다는 것이다. 이 자체가 쉽지 않은 행운임을 알고 가는 입장이기에 그저 감사함이 가득할 뿐이다.

처음 팀을 맡았을 때를 생각해보면 의식적으로 "사람"에 대해 많이 고민했던 것같다. "일"은 계속 해오던 것인데 반해서 "사람"에 관한 공부는 그렇지 않았기 때문이다. 정확하게는 개개인별로 대화를 나누면서 알아오고 있었지만, 집단으로서의 팀은 그런 경험이 전무하였다.

그래서 팀장으로 제일 먼저 한 것이 바로 면담이었다. 말 그대로 아는 것이 없었던 탓이다. 그래서 면담을 신청해야 하는데, 어떻게 이야기를 해야할지도 지식이 없던 터라, 이야기를 전달하기 위한 방안을 고민하는 것으로도 며칠이 흘렀던 것같다. 그렇게 면담을 진행하던 것이 1년이 지났고, 지금은 2주에 한번씩 면담을 진행하고 있다. 새로운 팀에서도 동일하게 진행하고 있다. 여전히 팀원과 대화를 할 때는 쉽지 않지만 말이다.

그리고 자연스럽게 면담에 대한 나만의 철칙도 생겼던 것같다.

첫 번째, 반드시 맥락을 전달한다. 맥락없는 대화는 대화를 진행하고 구성하기 위한 소재를 제공해주지 않기 때문에 대화자체가 매우 어렵다. 나는 대화를 하는 과정을 보물찾기와 비슷하다고 생각한다. 대화를 하는 과정에서 상대방이나 내가 관심있어어 하는 토픽을 발견하기 때문이다. 그리고 그 토픽은 더 큰 대화를 이끌어내기도 하기 때문에 맥락 없는 대화는 너무나도 어렵다.

두 번째, 사전질문을 준비한다. 사전질문은 맥락을 시작하기 위한 하나의 트리거를 제공한다. 특히 깊은 대화를 원한다면 정말 더 많이 필요하다. 그리고 이러한 사전질문은 처음에는 가벼운 질문으로 시작해서 점차 깊은 질문으로 가도록 디자인한다. 이를 통해서 개인을 넘어 팀내에 공통적인 맥락을 찾고, 이를 연결함으로써 팀내 상호의존적인 흐름이 생길 수 있도록 한다. 팀의 최종 목표는 목적 달성과 별개로 개개인의 성장이기 때문이다.

세 번째, 최대한 듣는다. 팀장이 되면 자연스레 말이 많아진다. 뿐만 아니라, 공감대도 조금씩 사라져간다. 따라서 팀장이 되면서 초반부터 듣는 것을 의식적으로 연습하지 않으면 정말로 안듣게 된다. 듣는게 힘들다면 상대방의 이야기에서 다음 이야기로 갈 수 있는 포인트를 찾자라는 형태로 관점을 바꾸면 최대한 들을 수 있다.

이러한 철칙아래 면담을 진행해오면서 개인적으로 느끼는 장점은 다음과 같았다.

무엇보다도, 팀원을 1:1로 더욱더 친해질 수 있었던 것같다. 회사에서 친분이 중요한가라고 생각할 수도 있다. 일을 잘하는게 제일 중요하니까 말이다. 맞는 말이다. 우리 모두 어른이고 프로페셔널하기 때문에 일은 기본이다. 하지만 이 전제조건에서 팀의 구성원을 나의 사람으로 만들기 위해서는 더욱더 가까워져야할 필요가 있다.

다음으로 팀을 더욱더 상호의존적으로 만들 수 있게 된다. 팀은 서로 의존하면서 하나의 팀으로 똘똘 뭉치려면 내가 없어도 서로간의 의존성을 높이고 서로간의 중요한 사람으로 만들려는 노력이 필요하다. 이러한 차원에서 팀장은 1:1을 통해서 서로간의 공통점을 찾고 연결해주려는 노력을 할 수 있다.

아마 내가 팀장으로 있는 동안에는 이러한 면담은 계속 할 것이다. 다만, 최근 들어서 약간 나도 늘어져서 1:1이 가벼운 대화와 업무가 혼재되어 진행하고 있는데, 올해에는 코칭의 성격을 여기에 부어봐야겠다. 그리고 팀원이 먼저 요청하는 1:1을 만들기 위해서 노력을 해봐야할 듯하다.  - 끗-

Read more

다중공선성은 잘못된 인과추론 결과를 만들어낼 수 있습니다.

다중공선성은 잘못된 인과추론 결과를 만들어낼 수 있습니다.

다중공선성(Multi Collinearity) * **Multi-Collinearity(다중공선성)**는 독립 변수들 간의 강한 상관관계가 존재할 때 발생합니다. 즉, 한 독립 변수가 다른 독립 변수에 의해 설명될 수 있을 정도로 상관관계가 높은 상황을 의미합니다. * 이 문제는 주로 회귀 분석에서 나타나며, 변수들 간의 관계를 해석하는 데 있어 큰 장애물이 될 수 있습니다. * 일반적인 회귀식을 $Y=

Bayesian P-Value는 불확실성을 감안하여 모델의 적합도를 평가합니다.

Bayesian P-Value는 불확실성을 감안하여 모델의 적합도를 평가합니다.

Bayesian P- Value * Bayesian P-Value는 **모델의 적합도(goodness-of-fit)**를 평가하는 데 사용됩니다. * 사후 분포(posterior distribution)를 이용하여 실제 데이터와 모델이 생성한 예상 데이터를 비교함으로써, 관측된 데이터가 모델에 의해 얼마나 잘 설명되는지를 평가합니다. * 빈도주의 p-값은 "관찰된 데이터보다 극단적인 데이터가 나올 확률"을 계산하지만, Bayesian P-Value는 "모델이 실제

Non-Identifiability는 Model Parameter를 고유하게 식별할 수 없는 현상입니다.

Non-Identifiability는 Model Parameter를 고유하게 식별할 수 없는 현상입니다.

Non Identifiability * Non-Identifiability는 주어진 데이터와 모델에 대해 특정 파라미터를 고유하게 식별할 수 없는 상황을 의미합니다. 즉, 여러 파라미터 값들이 동일한 데이터를 생성할 수 있으며, 이로 인해 특정 파라미터 값을 확정적으로 추정하기 어렵게 됩니다. * 베이지안 추론에서 Non-Identifiability는 사후 분포가 특정 파라미터 값에 대해 명확하게 수렴하지 않고, 여러 값들에 대해 비슷한 확률을

Rootgram은 큰 분산을 갖거나 비정규 형태의 데이터를 위한 히스토그램입니다.

Rootgram은 큰 분산을 갖거나 비정규 형태의 데이터를 위한 히스토그램입니다.

Rootgram * 히스토그램의 변형으로 데이터가 비정규적이거나 큰 분산을 가지는 경우, 정확한 분포를 파악하기 위해 사용됩니다. * 일반적으로 히스토그램은 데이터의 빈도를 직접적으로 나타내기 때문에, 큰 값이 빈번하게 발생하는 경우 상대적으로 작은 값을 잘 드러내지 못하는 경향이 있습니다. 반면, Rootgram은 빈도를 제곱근 형태로 변환하여, 데이터 분포의 차이를 더 잘 시각화할 수 있도록 돕습니다 * 여기서